REVIEW OF NETWORK HARDWARE AND PHYSICAL ADDRESSING

The TCP/IP Concept

- Use existing network hardware
- Interconnect networks
- Add abstractions to hide heterogeneity

The Challenge

- Accommodate all possible network hardware
- Question: what kinds of hardware exist?

Network Hardware Review

- We will
 - Review basic network concepts
 - Examine example physical network technologies
 - Introduce physical (hardware) addressing

Two Basic Categories Of Network Hardware

- Connection oriented
- Connectionless

Connection Oriented (Circuit Switched Technology)

- Paradigm
 - Form a "connection" through the network
 - Send/receive data over the connection
 - Terminate the connection
- Can guarantee bandwidth
- Proponents argue that it works well with real-time applications
- Example: ATM network

Connectionless (Packet Switched Technology)

- Paradigm
 - Form "packet" of data
 - Pass to network
- Each packet travels independently
- Packet includes identification of the destination
- Each packet can be a different size
- The maximum packet size is fixed (some technologies limit packet sizes to 1,500 octets or less)

Broad Characterizations Of Packet Switching Networks

- Local Area Network (LAN)
- Wide Area Network (WAN)
- Categories are informal and qualitative

Local Area Networks

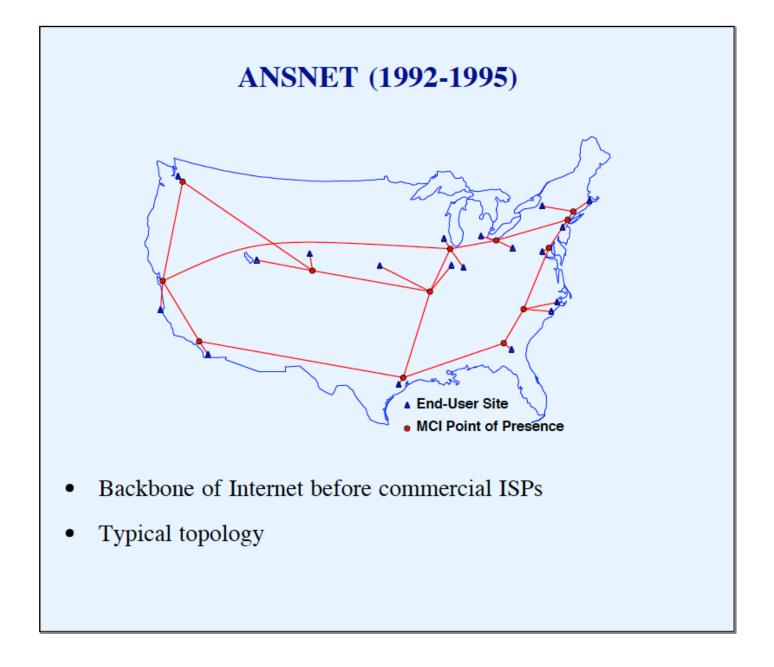
- Engineered for
 - Low cost
 - High capacity
- Direct connection among computers
- Limited distance

Wide Area Networks (Long Haul Networks)

- Engineered for
 - Long distances
 - Indirect interconnection via special-purpose hardware
- Higher cost
- Lower capacity (usually)

Examples Of Packet Switched Networks

- Wide Area Nets
 - ARPANET, NSFNET, ANSNET
 - Common carrier services
- Leased line services
 - Point-to-point connections
- Local Area Nets
 - Ethernet
 - Wi-Fi


ARPANET (1969-1989)

- Original backbone of Internet
- Wide area network around which TCP/IP was developed
- Funding from Advanced Research Project Agency
- Initial speed 50 Kbps

NSFNET (1987-1992)

- Funded by National Science Foundation
- Motivation: Internet backbone to connect all scientists and engineers
- Introduced Internet hierarchy
 - Wide area backbone spanning geographic U.S.
 - Many mid-level (regional) networks that attach to backbone
 - Campus networks at lowest level
- Initial speed 1.544 Mbps

Chapter 2 & 3 September 06, 2011

Wide Area Networks Available From Common Carriers

- Point-to-point digital circuits
 - T-series (e.g., T1 = 1.5 Mbps, T3 = 45 Mbps)
 - OC-series (e.g., OC-3 = 155 Mbps, OC-48 = 2.4 Gbps)
- Packet switching services also available
 - Examples: ISDN, SMDS, Frame Relay, ATM

Example Local Area Network: Ethernet

- Extremely popular
- Can run over
 - Copper (twisted pair)
 - Optical fiber
- Three generations
 - 10Base-T operates at 10 Mbps
 - 100Base-T (fast Ethernet) operates at 100 Mbps
 - 1000Base-T (gigabit Ethernet) operates at 1 Gbps
- IEEE standard is 802.3

Ethernet Frame Format

Preamble	Destination Address		Frame Type	Frame Data	CRC	
8 octets	6 octets	6 octets	2 octets	46-1500 octets	4 octets	

- Header format fixed (Destination, Source, Type fields)
- Frame data size can vary from packet to packet
 - Maximum 1500 octets
 - Minimum 46 octets
- Preamble and CRC removed by framer hardware before frame stored in computer's memory

Example Ethernet Frame In Memory

```
      02
      07
      01
      00
      27
      ba
      08
      00
      2b
      0d
      44
      a7
      08
      00
      45
      00

      00
      54
      82
      68
      00
      00
      ff
      01
      35
      21
      80
      0a
      02
      03
      80
      0a

      02
      08
      08
      00
      73
      0b
      d4
      6d
      00
      00
      04
      3b
      8c
      28
      28
      20

      0d
      00
      08
      09
      0a
      0b
      0c
      0d
      0e
      0f
      10
      11
      12
      13
      14
      15

      16
      17
      18
      19
      1a
      1b
      1c
      1d
      1e
      1f
      20
      21
      22
      23
      24
      25

      26
      27
      28
      29
      2a
      2b
      2c
      2d
      2e
      2f
      30
      31
      32
      33
      34
      35

      36
      37
```

- Octets shown in hexadecimal
- Destination is 02.07.01.00.27.ba
- Source is 08.00.2b.0d.44.a7
- Frame type is 08.00 (IP)

Point-to-Point Network

- Any direct connection between two computers
 - Leased line
 - Connection between two routers
 - Dialup connection
- Link-level protocol required for framing
- TCP/IP views as an independent network

Note: some pundits argue the terminology is incorrect because a connection limited to two endpoints is not technically a "network"

Hardware Address

- Unique number assigned to each machine on a network
- Used to identify destination for a packet

Hardware Address Terminology

- Known as
 - MAC (Media Access Control) address
 - Physical address
 - Hardware unicast address
- Hardware engineers assign fine distinctions to the above terms
- We will treat all terms *equally*

Use Of Hardware Address

- Sender supplies
 - Destination's address
 - Source address (in most technologies)
- Network hardware
 - Uses destination address to forward packet
 - Delivers packet to proper machine.
- Important note: each technology defines its own addressing scheme

Three Types Of Hardware Addressing Schemes

- Static
 - Address assigned by hardware vendor
- Configurable
 - Address assigned by customer
- Dynamic
 - Address assigned by software at startup

Examples Of Hardware Address Types

- Configurable: proNET-10 (Proteon)
 - 8-bit address per interface card
 - All 1s address reserved for broadcast
 - Address assigned by customer when device installed
- Dynamic MAC addressing: LocalTalk (Apple)
 - Randomized bidding
 - Handled by protocols in software

Examples Of Hardware Address Types (continued)

- Static MAC addressing: Ethernet
 - 48-bit address
 - Unicast address assigned when device manufactured
 - All 1s address reserved for broadcast
 - One-half address space reserved for multicast (restricted form of broadcast)
- Ethernet's static addressing is now most common form

Bridge

- Hardware device that connects multiple LANs and makes them appear to be a single LAN
- Repeats all packets from one LAN to the other and vice versa
- Introduces delay of 1 packet-time
- Does not forward collisions or noise
- Called Layer 2 Interconnect or Layer 2 forwarder
- Makes multiple LANs appear to be a single, large LAN
- Often embedded in other equipment (e.g., DSL modem)

Bridge (continued)

- Watches packets to learn which computers are on which side of the bridge
- Uses hardware addresses to filter

Layer 2 Switch

- Electronic device
- Computers connect directly
- Applies bridging algorithm
- Can separate computers onto virtual networks (VLAN switch)

Physical Networks As Viewed By TCP/IP

- TCP/IP protocols accommodate
 - Local Area Network
 - Wide Area Network
 - Point-to-point link
 - Set of bridged LANs

The Motivation For Heterogeneity

- Each network technology has advantages for some applications
- Consequence: an internet may contain combinations of technologies

Heterogeneity And Addressing

- Recall: each technology can define its own addressing scheme
- Heterogeneous networks imply potential for heterogeneous addressing
- Conclusion: cannot rely on hardware addressing

Summary

- TCP/IP is designed to use all types of networks
 - Connection-oriented
 - Connectionless
 - Local Area Network (LAN)
 - Wide Area Network (WAN)
 - Point-to-point link
 - Set of bridged networks

Summary (continued)

- Each technology defines an addressing scheme
- TCP/IP must accommodate heterogeneous addressing schemes

PART III

INTERNETWORKING CONCEPT AND ARCHITECTURAL MODEL

Accommodating Heterogeneity

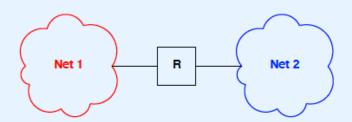
- Approach 1
 - Application gateways
 - Gateway forwards data from one network to another
 - Example: file transfer gateway
- Approach 2
 - Network-level gateways
 - Gateway forwards individual packets
- Discussion question: which is better?

Desired Properties

- Universal service
- End-to-end connectivity
- Transparency

Agreement Needed To Achieve Desired Properties

- Data formats
- Procedures for exchanging information
- Identification
 - Services
 - Computers
 - Applications
- Broad concepts: naming and addressing

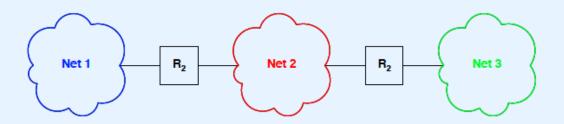

The TCP/IP Internet Concept

- Use available networks
- Interconnect physical networks
 - Network of networks
 - Revolutionary when proposed
- Devise abstractions that hide
 - Underlying architecture
 - Hardware addresses
 - Routes

Network Interconnection

- Uses active system
- Each network sees an additional computer attached
- Device is *IP router* (originally called *IP gateway*)

Illustration Of Network Interconnection



- Network technologies can differ
 - LAN and WAN
 - Connection-oriented and connectionless

Building An Internet

- Use multiple IP routers
- Ensure that each network is reachable
- Do not need router between each pair of networks

Example Of Multiple Networks

- Networks can be heterogeneous
- No direct connection from network 1 to network 3

Physical Connectivity

In a TCP/IP internet, special computers called IP routers or IP gateways provide interconnections among physical networks.

Packet Transmission Paradigm

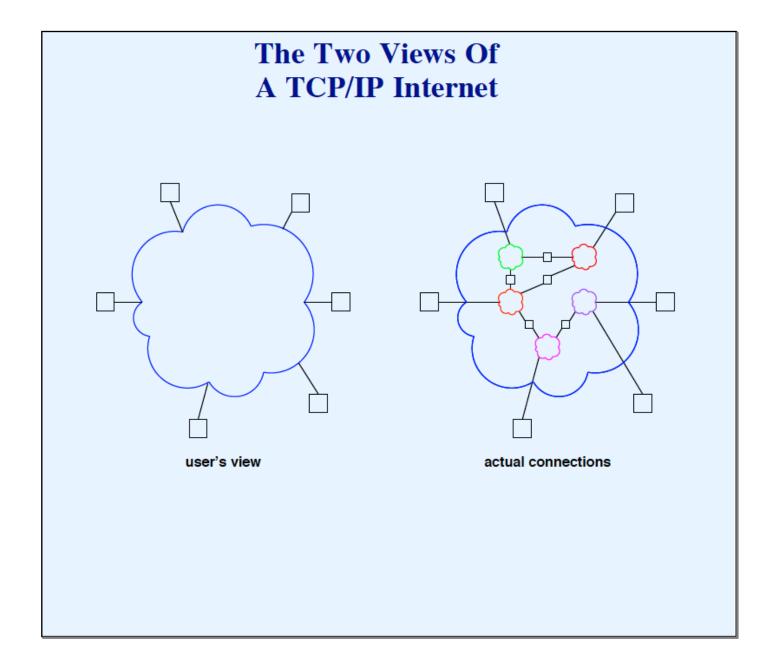
- Source computer
 - Generates a packet
 - Sends across one network to a router
- Intermediate router
 - Forwards packet to "next" router
- Final router
 - Delivers packet to destination

An Important Point About Forwarding

Routers use the destination network, not the destination computer, when forwarding packets.

Equal Treatment

The TCP/IP internet protocols treat all networks equally. A Local Area Network such as an Ethernet, a Wide Area Network used as a backbone, or a point-to-point link between two computers each count as one network.


User's View Of Internet

- Single large (global) network
- User's computers all attach directly
- No other structure visible

Illustration Of User's View Of A TCP/IP Internet user's view

Actual Internet Architecture

- Multiple physical networks interconnected
- Each host attaches to one network
- Single *virtual* network achieved through software that implements abstractions

Architectural Terminology

- End-user system is called host computer
 - Connects to physical network
 - Possibly many hosts per network
 - Possibly more than one network connection per host
- Dedicated systems called IP gateways or IP routers interconnect networks
 - Router connects two or more networks

Many Unanswered Questions

- Addressing model and relationship to hardware addresses
- Format of packet as it travels through Internet
- How a host handles concurrent communication with several other hosts

Summary

- Internet is set of interconnected (possibly heterogeneous) networks
- Routers provide interconnection
- End-user systems are called host computers
- Internetworking introduces abstractions that hide details of underlying networks